Abstract

To improve the photoelectrochemical properties of TiO2, an approach of codoping is introduced to simultaneously tailor the band gap and control the life time of photoexcited electron–hole pairs. Molybdenum doping is used to extend the optical absorption of TiO2 while silver inclusion in the molybdenum-doped TiO2 network improves the separation between the photogenerated carriers leading to improved photodegradation response. X-ray photoelectron spectroscopy (XPS) confirmed the existence of dopant atoms in the bulk lattice and the codoped sample exhibits enhanced photodegradation performance compared to monodoped samples. With less structure modifications and stable structure, the silver molybdenum codoped TiO2 highly improve the wide functionalities of TiO2 in photoelectrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.