Abstract

Decahedral anatase particles (DAPs) with eight equivalent (101) facets and two (001) facets were prepared by the gas-phase process. Monometallic and bimetallic photocatalysts were prepared by photodeposition of silver and copper on DAP. It was found that the method of metal deposition (sequential/simultaneous) is crucial for resultant properties and thus for photocatalytic performance. The fastest hydrogen evolution during metal deposition was observed for copper deposited on premodified DAP with silver (DAP/Ag/Cu), probably due to partial coverage of silver with fine clusters of Cu and thus facilitation of proton adsorption and reduction on well-dispersed Cu nanoclusters. Although DAP/Ag/Cu exhibited the fastest rate of hydrogen evolution, single-modified DAP with silver exhibited the best performance for oxidative decomposition of organic compounds under vis irradiation.

Highlights

  • Decahedral anatase particles (DAPs) were prepared from titanium(IV) chloride (TiCl4) and oxygen by rapid heating and quenching of the gas reaction mixture, which hindered the formation of perfect anatase crystals [octahedral anatase particles (OAPs)]

  • An increase in the overvoltage toward the hydrogen evolution reaction was reported for an AgCu alloy electrode in comparison to electrodes composed of single metals, which was surprising since silver and copper have

  • Facetted anatase titania particles with a decahedral crystal shape were intended for modification by silver and copper

Read more

Summary

Introduction

Visible light-responsive photocatalysts have been considered as future materials which could help to solve emergency human problems concerning energy demand, drinkable water, and a clean environment.[1,2,3,4] Among them, modified titania photocatalysts have been the most extensively investigated since bare titania has often been found to be the best heterogeneous photocatalyst, due to high photocatalytic activity, availability, cheapness, stability, and negligible toxicity (i.e., due to the toxicity of nanomaterials).[5,6,7,8] Despite these advantages, the broad application of titania is still limited to world regions with a high intensity of solar radiation, due to its wide bandgap (ca. 3.0 to 3.2 eV depending on polymorphic form), and the necessity of being excited with UV irradiation. Silver (Ag) and copper (Cu) were selected for this study, due to their advantageous prices (in comparison to gold and platinum) and future possible application for microorganism inactivation, as their antimicrobial properties have been known since ancient times, and nowadays the application of Ag and Cu in the form of various nanostructures has been intensively investigated.[48,49,50,51,52,53]

Experimental Details
Preparation of Mono- and Bimetal-Modified DAP
Characterization of Ag- and Cu-Modified DAP
Photocatalytic Activity of Ag- and Cu-Modified DAP
Summary and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.