Abstract

We report the synthesis of silver anchored and para toluene sulfonic acid (pTSA) doped polyaniline/molybdenum disulfide nanocomposite (pTSA/Ag-Pani@MoS2) for highly reproducible room temperature detection of ammonia and methanol. Pani@MoS2 was synthesized by in situ polymerization of aniline in the presence of MoS2 nanosheets. The chemical reduction of AgNO3 in the presence of Pani@MoS2 led to the anchoring of Ag to Pani@MoS2 and finally doping with pTSA produced highly conductive pTSA/Ag-Pani@MoS2. Morphological analysis showed Pani-coated MoS2 along with the observation of Ag spheres and tubes well anchored to the surface. Structural characterization by X-ray diffraction and X-ray photon spectroscopy showed peaks corresponding to Pani, MoS2, and Ag. The DC electrical conductivity of annealed Pani was 11.2 and it increased to 14.4 in Pani@MoS2 and finally to 16.1 S/cm with the loading of Ag. The high conductivity of ternary pTSA/Ag-Pani@MoS2 is due to Pani and MoS2 π-π* interactions, conductive Ag, as well as the anionic dopant. The pTSA/Ag-Pani@MoS2 also showed better cyclic and isothermal electrical conductivity retention than Pani and Pani@MoS2, owing to the higher conductivity and stability of its constituents. The ammonia and methanol sensing response of pTSA/Ag-Pani@MoS2 showed better sensitivity and reproducibility than Pani@MoS2 owing to the higher conductivity and surface area of the former. Finally, a sensing mechanism involving chemisorption/desorption and electrical compensation is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call