Abstract

In this paper, we report the use of a single masking film for deep glass etching in hydrofluoric acid (HF). Thin film silver (Ag) is the key masking material in this work enabling a simple and low cost fabrication of microfluidic structures. The Ag film was deposited by evaporation and etched in a diluted nitric acid and de-ionized water solution at a ratio of 1:3. Surface morphology for different thicknesses of Ag film and its correlation to the maximum achievable etch depth is analyzed. AFM results shows low roughness values (<5 nm), indicating the Ag films are of smooth surface. With a 100 nm Ag film, a 220 μm etch depth in borosilicate glass substrates were produced and by further thickening the Ag to 300 nm, etch depths exceeding 300 μm were successfully achieved. SEM images show that thinner Ag films are of finer grains, potentially a source for pinholes formation where rapid penetration of HF along the grain boundaries peels off the Ag film from the glass surface. However, the Ag film was found not to react with HF. The process was demonstrated in the fabrication of cavities for integration with other microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.