Abstract

To maximize the benefit of semiconductor technology, the U.S. military is requiring that the operating temperature for power electronic devices must be able to handle temperatures of up to 150 /spl deg/C. Power devices that use the wide band gap material silicon carbide (SiC) are being developed to provide large breakdown voltages and fast recovery times. When circuits call for high blocking voltages and fast reverse recovery times under adverse temperature situations, the p-i-n diode is the device presently used. To simulate the SiC device behavior, a modeling program named Silvaco was used to characterize a 5.76 mm/sup 2/ 10 kV SiC p-i-n diode manufactured by Cree under forward bias, reverse blocking and reverse recovery conditions. These simulations are then compared with test results from the actual device. Forward bias testing of the diode was conducted on a high power curve tracer and two different test circuits were developed to test reverse blocking and reverse recovery conditions respectively on sample diodes from Cree to add credibility to the Silvaco simulations. The results from the simulation and the experimental test were compared to verify the accuracy of the simulation and improve the prediction of high temperature device behavior in power electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.