Abstract
We report the formulation of siloxane polymers for high-resolution, high-accuracy stamps for soft lithography. With this technique, a molecular, polymeric, or liquid ink is applied to the surface of a stamp and then transferred by conformal contact to a substrate. Stamps for this technique are usually made of a commercial siloxane elastomer with appropriate mechanical properties to achieve conformal contact but are incapable of printing accurate, submicrometer patterns. To formulate better stamp polymers, we used models of rubber-like elasticity as guidelines. Poly(dimethylsiloxane) networks were prepared from vinyl and hydrosilane end-linked polymers and vinyl and hydrosilane copolymers, with varying mass between cross-links and junction functionality. The polymer formulations were characterized by strain at break as well as compression modulus and surface hardness measurements. This resulted in the identification of bimodal polymer networks having mechanical properties that allow the replication of high-density patterns at the 100 nm scale and that withstand the mechanical constraints during use as a stamp material. We also demonstrate advantageous implementations of the formulated polymers in hybrid stamps that achieve submicrometer-dimensional accuracy over large areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.