Abstract

AbstractSiloxanes have evolved into a multi‐million dollar business due to their manifold of commercial and industrial applications. As siloxanes have high hydrophobicity, low basicity, high flexibility and also high chemical inertness in common, their chemistry differs significantly from that of organic ethers. The discovery of organic crown ethers, for instance, is commonly accepted as the birth of synthetic host‐guest chemistry. Regarding the chemical properties of siloxanes, cyclic siloxanes which formally resemble silicon analogues of crown ethers, have received considerably less interest in terms of their host‐guest chemistry. Hence, only little is known about siloxane coordination chemistry in the chemical community and the number of published works in this field has been very low till lately. In the last few years, the field has significantly advanced and elegant methods were established to enable the Si−O−Si unit for coordination. This review therefore summarizes the recent developments in the field, recapitulates the historical aspects of siloxane coordination chemistry and describes the specific Si−O bond character with regard to different siloxane linkages. Implications on Si−O bond activation are included and the limits of siloxane coordination are redefined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.