Abstract

The combination of biomimetic and 3D printing has created novel opportunities for the manufacture of 3D engineered materials. A sub-microscale E-Jet 3D printing method, inspired by the dehydration and protein enrichment process of silkworm, was developed to fabricate composite bone tissue scaffold with the characteristics of controllability, fast and inexpensive. By applying the resultant effects of thermal field and flow field to low viscous composite ink, the concentration gradient biopolymer ink was obtained near the needle tip, mimicking the advanced dehydration of natural spinning apparatus. After electrical shearing force were applied on concentration gradient ink, a stable and fine jet formed. Various printing modes (droplet, continuous fiber) and structure resolutions were achieved by adjusting local solvent evaporation. Thin film, high resolution 2D structures, high aspect ratio well-bonding 3D structures were fabricated. The printed result showed that a 100 μm-sized needle could be employed directly to print patterning down to 800 nm. The printed composite scaffold with controllability of fiber size and space has been proved the feasibility as a medium for bone tissue regeneration. It can be estimated that the novel biomimetic E-Jet 3D printing technique is a new and promising way for bone tissue repairing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call