Abstract

AbstractMost current resistive memory has the problems of high and unstable threshold voltages and high device misread rates caused by low current switching ratios. To address these problems, an Al/poly(methyl methacrylate) (PMMA)/silkworm hemolymph:gold nanoparticles/PMMA/indium tin oxide memory device is fabricated by adding PMMA layers above and below the active layer. The device not only has stable bipolar switching characteristics with a high ON/OFF current ratio but also has a lower and more stable threshold voltage. Potentiation, depression, and spike‐time‐dependent plasticity at biological synapses are realized using this device. The device is successfully fabricated on a flexible substrate, and the device can still maintain a stable working state after 104 bending cycles. This research opens a new door for the future realization of artificial synapses in neural network hardware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call