Abstract

Vector dissemination, transient gene expression, and rapid clearance are major obstacles to successful human gene therapy. In this study, we investigated the effect of silk-elastinlike protein polymer (SELP) hydrogels on biodistribution and anticancer efficacy of adenoviral gene therapy in a head and neck cancer model. Transcriptional activities of adenovirus carrying beta-galactosidase (Ad-LacZ) and luciferase (Ad-Luc) reporter genes were evaluated in (nu/nu) mice with head and neck cancer as a function of polymer concentration. Antitumor efficacy of thymidine kinase encoding adenovirus (Ad-Tk) and ganciclovir (GSV) combination was also evaluated. SELP (4 wt %) matrices localized viral release, minimized dissemination to liver, and enhanced reporter gene expression levels by 4-8-fold compared to virus alone. SELP- Ad-Tk with GSV reduced tumor volume significantly compared to the virus alone. SELPs provide a means for temporal and spatial control of viral gene delivery to head and neck tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.