Abstract

Caddisflys (order Trichoptera) construct elaborate protective shelters and food harvesting nets with underwater adhesive silk. The silk fiber resembles a nanostructured tape composed of thousands of nanofibrils (∼ 120 nm) oriented with the major axis of the fiber, which in turn are composed of spherical subunits. Weaker lateral interactions between nanofibrils allow the fiber to conform to surface topography and increase contact area. Highly phosphorylated (pSX)(4) motifs in H-fibroin blocks of positively charged basic residues are conserved across all three suborders of Trichoptera. Electrostatic interactions between the oppositely charged motifs could drive liquid-liquid phase separation of silk fiber precursors into a complex coacervates mesophase. Accessibility of phosphoserine to an anti-phosphoserine antibody is lower in the lumen of the silk gland storage region compared to the nascent fiber formed in the anterior conducting channel. The phosphorylated motifs may serve as a marker for the structural reorganization of the silk precursor mesophase into strongly refringent fibers. The structural change occurring at the transition into the conducting channel makes this region of special interest. Fiber formation from polyampholytic silk proteins in Trichoptera may suggest a new approach to create synthetic silk analogs from water-soluble precursors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call