Abstract
Most fouling organisms have planktonic larval and benthic adult stages. Larval settlement, the planktonic-benthic transition, is the critical point when biofouling begins. However, our understanding of the molecular mechanisms of larval settlement is limited. In our previous studies, we identified that the AMP-activated protein kinase-silk gland factor 1 (AMPK-SGF1) pathway was involved in triggering the larval settlement in the fouling mussel M. sallei. In this study, to further confirm the pivotal role of SGF1, multiple targeted binding compounds of SGF1 were obtained using high-throughput virtual screening. It was found that the targeted binding compounds, such as NAD+ and atorvastatin, could significantly induce and inhibit the larval settlement, respectively. Furthermore, the qRT-PCR showed that the expression of the foot proteins' genes was significantly increased after the exposure to 10 μM NAD+, while the gene expression was significantly suppressed after the exposure to 10 μM atorvastatin. Additionally, the production of the byssus threads of the adults was significantly increased after the exposure to 10-20 μM of NAD+, while the production of the byssus threads was significantly decreased after the exposure to 10-50 μM of atorvastatin. This work will deepen our understanding of SGF1 in triggering the larval settlement in mussels and will provide insights into the potential targets for developing novel antifouling agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.