Abstract

Rapid and strong adhesion of hydrogel adhesives is required for instant wound closure and hemostasis. However, in situ hydrogel formation and sufficient adhesion at target tissue sites in biological environments are severely compromised by the presence of blood and body fluids. In this work, an underwater adhesive hydrogel (named SHCa) is fabricated with rapid in situ gelation, enhanced mechanical toughness, and robust underwater adhesion. The SHCa can undergo rapid UV irradiation-induced gelation under water within 5 s and adhere firmly to underwater surfaces for 6 months. The synergistic effects of crystalline β-sheet structures and dynamic energy-dissipating mechanisms enhance the mechanical toughness and cohesion, supporting the balance between adhesion and cohesion in wet environments. Importantly, the SHCa can achieve rapid in situ gelation and robust underwater adhesion at various tissue surfaces in highly dynamic fluid environments, substantially outperforming the commercially available tissue adhesives. The lap shear adhesion strength and wound closure strength of SHCa on blood-covered substrates are 7.24 and 12.68 times higher than those of cyanoacrylate glue, respectively. Its fast hemostasis and wound sealing performance are further demonstrated in in vivo animal models. The proposed hydrogel with strong underwater adhesion provides an effective tool for fast wound closure and hemostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.