Abstract

Neural stem cells (NSCs) transplantation therapy is a promising method for neural tissue regeneration. How to enhance the neuronal differentiation of NSCs has been the most challenging aspect of NSCs application. Herein, the microRNA-222 loaded chitosan nanoparticles (miR-222/CS NPs) were incorporated with silk fibroin (SF) nanofibrous scaffolds to enhance neuronal differentiation of NSCs. The encapsulation efficiency of miR-222 in the miR-222/CS NPs was (96.4 ± 0.3) %. The results of the electrophoretic assay and cellular uptake assay confirmed that miR-222 was stable in the miR-222/CS NPs and can be effectively delivered into NSCs. The water contact angle decreased from (89 ± 3.05)° for the SF scaffolds to (14 ± 1.00)° for the composite scaffolds. The Western blot and RT-PCR results confirmed that the composite scaffolds could enhance neuronal differentiation of NSCs. In conclusion, the SF nanofibrous scaffolds in combination with miR-222/CS NPs are a promising approach for neural tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call