Abstract
Silk fibroin (SF) hydrogels have attracted extensive interest in biomedical applications due to their biocompatibility and wide availability. However, their generally poor mechanical properties limit their utility. Here, injectable, ready-to-use SF-based composites, simultaneously induced and reinforced by acidic calcium phosphates, were prepared via a dual-paste system requiring no complex chemical/physical treatment. The composite was formed by mixing a monocalcium phosphate monohydrate paste with a β-tricalcium phosphate/SF paste. The conformational transition of SF in an acidic environment forms continuous networks, and the acidic calcium phosphate, brushite and monetite, formed simultaneously in the networks during mixing. The composites displayed a partly elastomeric compression behavior, with mechanical properties increasing with an increasing calcium phosphate and β-sheet content at the lower calcium phosphate contents evaluated (22.2–36.4 wt%). While the stiffness was still relatively low, the materials presented a high elasticity and ductility, and no failure at stresses in the range of failure stresses of trabecular bone. Furthermore, the calcium phosphate confers bioactivity to the material, and the composites with a promising in vitro cell response also showed potential as drug vehicles, using vancomycin as a model drug. These dual-paste systems exhibit potential utility in biomedical applications, such as bone void fillers and drug vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.