Abstract

Previous results have shown that the nacre specific peptide, n16N, from the Japanese pearl oyster Pinctada fucata has a binding affinity for β-chitin. As a result, the n16N-chitin assembly is able to selectivity nucleate aragonite. Here, we have added silk fibroin hydrogels to the in vitro assay to more fully represent the in vivo matrix. Crystallization, with a silk fibroin hydrogel and n16N on β-chitin, results in metastable vaterite and amorphous calcium carbonate, which form as flat deposits with hemispherical centers. Acidic peptide controls (p-Asp/p-Glu) were also tested in the silk-chitin assay and result in flat calcite that grows into the β-chitin substrate. Fluorescence imaging of that matrix, made with labeled n16N, shows that n16N binds to β-chitin in the presence of silk gel. These results demonstrate that the addition of a silk hydrogel to the n16N−β-chitin assembly changes the microenvironment for mineralization. This work contributes to our understanding of the roles of individual nacre ma...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.