Abstract

Developing a functional coating for vascular stents with sustainable and tunable NO release remains challenging. In this work, we report a silk fibroin/chitosan-based biopolymer coating incorporating copper ions as a catalyst for NO generation and demonstrate its potential for the surface functionalization of cardiovascular stents. Based on the differences in silk fibroin and chitosan coordinating with copper ions, the loading, bonding, and release of copper ions could be precisely regulated over a wide range by controlling the ratio of silk fibroin and chitosan. This system shows good cytocompatibility for endothelial cells and tunable catalytic activity to decompose S-nitroso-N-acetyl-D-penicillamine (SNAP) for NO generation. Consequently, a functionalized coating with sustainable and tunable NO catalysis generation was developed on the metallic stent. Based on good biocompatibility, tunable NO release, and simple processing, the coating is expected to have great promise in the field of intervention therapy of cardiovascular disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.