Abstract

The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

Highlights

  • The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds

  • By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits

  • We report the use of silk fibroin suspension as an edible coating material for perishable fruit preservation

Read more

Summary

Introduction

The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. An increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. Silk fibroin-coated fruits were treated with water vapour under vacuum (namely water annealing post-processing) to explore the effects of increasing beta-sheet content in silk fibroin materials on the management of fruits’ postharvest physiology[26].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call