Abstract

Although silicon is being researched as one of the most promising anode materials for future generation lithium-ion batteries owing to its greater theoretical capacity (3579 mAh g-1), its practical applicability is hampered by its worse rate properties and poor cycle performance. Herein, a silicon/graphite/amorphous carbon (Si/G/C) anode composite material has been successfully prepared by a facile spray-drying method followed by heating treatment, exhibiting excellent electrochemical performance compared with silicon/amorphous carbon (Si/C) in lithium-ion batteries. At 0.1 A g-1, the Si/G/C sample exhibits a high initial discharge capacity of 1886 mAh g-1, with a high initial coulombic efficiency of 90.18%, the composite can still deliver a high initial charge capacity of 800 mAh g-1 at 2 A g-1, and shows a superior cyclic and rate performance compared to the Si/C anode sample. This work provides a facile approach to synthesize Si/G/C composite for lithium-ion batteries and has proven that graphite replacing amorphous carbon can effectively improve the electrochemical performance, even using low-performance micrometer silicon and large size flake graphite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.