Abstract

The emerging role of silicon (Si) has attracted a great deal of interest from researchers because of the numerous agronomic benefits of this element to plants. Indeed, silicon improves plant resistance to a range of biotic and abiotic stresses, with consequent yield increases. Furthermore, it enhances resistance in several crops of great economic importance to diseases and insect pests. Until recently, the exact nature of protective effects of silicon in plants is uncertain. To date, two major defense mechanisms due to silicon application have been documented: physical defense and biochemical defense. In this review, the interaction between silicon-treated- plants and reduced biotic stresses (disease and insect pests) incidence was explored. The current research presents the agronomic importance of silicon in plants, the control of fungal and bacterial pathogens and insect pests according to their lifestyle, and viral agents, and different mechanisms of silicon-enhanced resistance. By regrouping the data presented in this paper, a good knowledge of the association between silicon treatment, increasing plant resistance, and decreasing biotic stresses occurrence could be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call