Abstract

Dielectric elastomers (DEs) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis of siloxane copolymers, thereby allowing for the attachment of high dielectric permittivity molecules through copper-catalysed azide-alkyne 1,3-dipolar cycloaddition (CuAAC). The copolymers have a high degree of chemical freedom, as the dimethylsiloxane spacer units between the functional groups, as well as the degree of functionalisation, can be varied. Thus, the best overall properties were obtained for an elastomer prepared with a copolymer with a 1200 g mol−1 dimethylsiloxane spacer unit and 5.6 wt% of the high dielectric permittivity molecule 1-ethynyl-4-nitrobenzene. Here, a high increase in dielectric permittivity (∼70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call