Abstract

In this study, the effect of using different types of fuel and various amounts of Si4+ ions on the biological properties of silicon-doped calcium phosphates (CaPs), which were synthesized using solution combustion method were investigated. X-ray diffraction (XRD) patterns showed that hydroxyapatite/beta-tricalcium phosphate (HA/βTCP) was crystallized in all synthesized samples. The synthesized sample using glycine as fuel, which doped with 0.1mol Si4+ ions exhibited the most desirable properties. Consecutively, the zeta potential and specific surface area were enhanced from -20 to -27mV and 38 to 146m2/g, respectively, by increasing the amount of Si4+ ions from 0 to 0.1mol. The bioactivity of the samples immersed in simulated body fluid (SBF) was innovatively determined by the joint analyses of the tensiometer, inductively coupled plasma (ICP), field emission scanning electron microscopy (FESEM), and XRD data. These findings plus theoretical calculations demonstrate, for the first time, that the Si4+ doping could improve the bioactivity of the powders up to ~155%. The results of in vitro cell-based experiments, including cell viability, alizarin red staining, and cell attachment, confirmed the positive effects of Si-doped powders in the biological systems. Furthermore, Si-doped powders were able to improve the migration ability of mammalian cells in vitro; they could be considered good candidates in angiogenesis-based therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.