Abstract

Silicon/carbon nanocomposite as anode materials for lithium-ion batteries is synthesized by a simple route using phenolic resin as a precursor. The Si nanoparticles with the size of 50–200 nm in diameter can be uniformly coated by carbon layer when the content of carbon is 58%. As an anode material for lithium-ion batteries, the Si/C nanocomposite exhibits a reversible capacity of 678 mAh g−1 after 50 cycles at a current density of 100 mA g−1as well as excellent capacity retention at high rates. These improvements could be attributed to the introduction of carbon in the Si/C nanocomposite and carbon coatings on the surface of Si, which provide a rapid lithium transport pathway, reduce the cell impedance and stabilize the electrode structure during charge/discharge cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.