Abstract

MICROELECTRONIC device integration has progressed to the point where complete 'systems-on-a-chip' have been realized1–3. Now that optoelectronics is becoming increasingly important for information and communication technologies, there is a need to develop optoelectronic devices that can be integrated with standard microelectronics. Conventional semiconductor technology is largely based on crystalline silicon, which (being an indirect bandgap semiconductor) is an inefficient light-emitting material. This has stimulated significant effort towards developing silicon-based optoelectronic components and, of the several strategies explored so far4,5, the use of porous silicon appears the most promising; porous silicon produces high-efficiency, room-temperature, visible photoluminescence6, and its material and optical properties have been studied in detail7,8. But the extreme reactivity and fragility of porous silicon have hitherto prevented its integration with conventional silicon processing technology. We have recently shown9,10 that the thermal and chemical stability of porous silicon can be greatly enhanced — while retaining desirable light-emitting and charge-transport properties — by partial oxidation. Here we take advantage of these improvements in material properties to demonstrate the successful integration of silicon-based visible light-emitting devices into a standard bipolar microelectronic circuit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call