Abstract

In this paper, we present a set of models that describe the principal components of the Horizontal Ribbon Growth process—mainly, the interaction between fluid flow and heat transfer, the crystallization dynamics, and the effect of impurities on the morphology of the interface. Fluid-flow and heat-transfer models show the relationship between the pulling rate and the thickness of the silicon film. A crystallization model is developed to find the concentration distribution of impurities—aluminum in this case—in the melt and in the ribbon. We find that, because of low growth velocities, there is no formation of a solute-enriched boundary layer and that a 50-fold reduction of aluminum impurities can be expected. Finally, we use the Mullins–Sekerka stability theory to show that aluminum impurities at the proposed levels do not destabilize the interface upon applied perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.