Abstract

In view of the potential use of silicon carbide (SiC) in the nuclear industry, it is of major interest to understand point defect formation in this material. This work is a contribution to the determination of the silicon threshold displacement energy in the cubic polytype of SiC using electron irradiations with increasing energies from 275 to 680 keV. The photoluminescence signal of the silicon vacancy was related to the number of displacements per atom in the silicon sublattice. This quantity was calculated taking into account the energy loss and angular dispersion of electrons in the target. A best fit of experimental data was obtained for a displacement cross section using a threshold displacement energy of 25 eV along the [100] lattice direction. We checked the relevance of this result by comparing the experimental concentration of silicon single vacancies measured by electron paramagnetic resonance spectroscopy with the theoretical number of displaced silicon atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.