Abstract
Owing to their high oscillator strength, binding energy, and low-cost fabrication, two-dimensional halide perovskites have recently gained attention as excellent materials for generating exciton-polaritons at room temperature. Unlike traditional materials used for polaritons, such as ZnO, GaAs, and GaN, halide perovskites exhibit great compatibility with matured CMOS technologies. However, no studies have reported perovskite-based polaritons on silicon platforms. Here, we numerically demonstrate the possibility of a polariton when a Si nanodisk array couples with a thin film of phenethylammonium lead iodide perovskite. An asymmetric lattice of thin Si nanodisks is used to generate surface lattice resonances from the coupling between the disk's electrical resonator and the lattice's diffracted waves. Polaritonic modes with high Rabi splitting values can be easily achieved for a large range of parameters. This Rabi splitting can be engineered by varying the ratio of electromagnetic energy confined within the Si disk and perovskite thin film. This study provides insight into nanophotonic structure design for CMOS-based optoelectronics, sensors, and polaritonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.