Abstract

Waveguiding platforms consisting of metallic nano-wires embedded inside vertical-type dielectric slot waveguides are proposed and the guiding properties are investigated at the telecom wavelength. It is shown that the characteristics of the plasmonic modes can be strongly modified owing to the existence of the silicon rails in close proximity to the metallic nanowire, which enables low-loss light guiding with subdiffraction-limited mode area. Systematical analysis regarding the variation of key geometric parameters has revealed that the symmetric hybrid mode can exist within a wide-range of physical dimensions, and demonstrates improved optical performance over either the conventional hybrid plasmonic mode or the fundamental plasmonic mode supported by a single metal nanowire. Furthermore, we show numerically that the supported symmetric and asymmetric modes can be separately excited through controlling the polarization state of the Gaussian beam that illuminated onto the nanowire tip. The presented hybrid waveguides naturally extend the capabilities of both the silicon slot and metal nanowire structures, which could facilitate a number of potential applications at the subwavelength scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.