Abstract

The present study evaluated the effect of silicon (Si) seed priming and sulfur (S) foliar spray on drought tolerance of two contrasting maize hybrids viz. drought tolerant Hi-Corn 11 and susceptible P-1574. The maize seeds were primed with (3 mM Na2SiO3) or without Si (hydropriming) and later sown in pots filled with sandy loam soil. Drought stress (25–30% water holding capacity or WHC) was initiated at cob development stage (V5) for two weeks, whereas the well-watered plants were grown at 65–70% WHC. On appearance of drought symptoms, foliar spray of S was done using 0.5% and 1.0% (NH4)2SO4, whereas water spray was used as a control. The drought-stressed plants were grown for further two weeks at 25–30% WHC before the final harvest. The results showed a marked effect of Si seed priming and foliar S spray on biomass, physiological and enzymatic processes as well as macronutrient concentrations of maize. In comparison to control, the highest increase in leaf relative water content (25%), chlorophyll a content (56%), carotenoids (26%), photosynthetic rate (64%), stomatal conductance (56%) and intercellular CO2 concentration (48%) was observed by Si seed priming + S foliar spray (Si + S) under water deficit conditions. Also, Si + S application stimulated the activity of catalase (45%), guaiacol peroxidase (38%) and superoxide dismutase (55%), and improved NPK concentrations (40–63%) under water limitations. Our results suggest that Si seed priming + foliar spray of S is more effective than the individual application of these nutrients to enhance drought tolerance in maize.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call