Abstract

Background: Silicon (Si) can directly or indirectly enhance plant resistance to fungal pathogens, but no report is available concerning the effectiveness of Si in decreasing Fusarium Head Blight (FHB) disease on barley (Hordeum vulgare L.). Objective and Methods: The evaluation of Si supplied to barley incorporated into the soil and as a foliar spray against four FHB species under controlled conditions was investigated. In addition, the potential resistance mechanisms related to the reduction of Disease Incidence (DI) and Disease Severity (DS) measured at 7, 14, 21, and 28 days post-inoculation (dpi) were proposed. Four Si concentrations of both a SiO2 powder incorporated into the soil as a solid source, i.e., of 0.00, 0.50, 1.50 and 3.00 g/kg and a liquid formulation of Si as a foliar spray, i.e., of 0.0, 0.8, 1.7 and 3.4 ppm were tested to study their effect on the development of FHB fungi on two barley moderately resistant “MR” and susceptible “S” cultivars. Results: All concentrations of Si did not significantly reduce DI and DS at 7 dpi. The disease reduction was observed with the application of 1.50 g/kg of soil and 1.7 ppm at 14 dpi and increased with time until 28 dpi, however, the other rates had no significant effect. At 28 dpi, solid and foliar treatments reduced DI by 26.6% and 22.9%, respectively, on “MR” cultivar, and by 19.4% and 19.5%, respectively, on “S” cultivar and decreased DS by 20.4% and 19.5%, respectively, on “MR” plants and by 18.8% and 18.4%, respectively, on “S” plants. Conclusion: No effects of Si were observed during the initial infection stage; our results suggest that Si triggers defense processes in barley plants in the latest infection stages to diminish DI and DS by affecting mycotoxins synthesis. Si inputs can be a valuable tool in integrated FHB management by reducing the disease development on barley.

Highlights

  • Barley (Hordeum vulgare L.) is the fourth most produced cereal crop globally and is cultivated in temperate climate regions

  • No effects of Si were observed during the initial infection stage; our results suggest that Si triggers defense processes in barley plants in the latest infection stages to diminish Disease Incidence (DI) and Disease Severity (DS) by affecting mycotoxins synthesis

  • Distinctive Fusarium Head Blight (FHB) symptoms generated by the 16 fungal isolates were obvious and simple to record in the inoculated spikelets, whereas no symptoms were existent in the control plants (Table 1)

Read more

Summary

Introduction

Barley (Hordeum vulgare L.) is the fourth most produced cereal crop globally and is cultivated in temperate climate regions. The lack of FHB resistant barley cultivars makes it difficult to achieve complete control of disease due to (1) potential presence of fungal inoculum on crop residues, such as ascospores, macroconidia, chlamydospores, and hyphal fragments, (2) possible persistence of favorable environmental conditions during the flowering stage for FHB infection, (3) complex inheritance of QTLs resistance and (4) significant cultivar-by-environment interaction effects [6 - 8]. Given this evidence, new strategies in the context of integrated disease management need to be developed to diminish losses due to the FHB pathogen complex. Silicon (Si) can directly or indirectly enhance plant resistance to fungal pathogens, but no report is available concerning the effectiveness of Si in decreasing Fusarium Head Blight (FHB) disease on barley (Hordeum vulgare L.)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.