Abstract

Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call