Abstract
SAPO-34 is a commercially-implemented silicoaluminophosphate catalyst for selective high yield production of ethene and propene from methanol, but high temperature regeneration in the presence of steam leads to its deactivation. A comprehensive investigation of the effect of prolonged hydrothermal treatment on the structure and properties of SAPO-34 explains the changes in its catalytic methanol-to-olefins (MTO) performance. Microcrystalline powdered SAPO-34 (ca. 3 µm crystals, Al17.1P15.6Si3.3O72) and two batches of larger single crystals of SAPO-34 of different Si concentration (20–100 µm; Al17.3P14.7Si4.0O72 and Al17.7P12.3Si5.9O72) were steamed (pH2O = 0.95 atm) at 873–1023 K for up to 240 h. The acidity (NH3-TPD), crystallinity (PXRD), framework cation environment (solid-state 27Al, 29Si and 31P MAS NMR) and porosity were followed for all materials; larger crystals were amenable to single crystal X-ray diffraction, FIB-SEM and synchrotron IR microspectroscopy, including operando study during methanol and dimethyl ether conversions. Some level of steaming improved the lifetime of all SAPO-34 materials in MTO catalysis without affecting their olefin selectivity, although more severe conditions led to the formation of core–shell structures, microporosity loss and eventually at 1023 K, recrystallization to a dense phase. All these irreversible changes occurred faster in crystals with higher Si contents. The initial increase in catalytic lifetime results from an activated reduction in acid site density (Eact = 146(18) kJ mol−1), a result of redistribution of Si within the SAPO framework without porosity loss. Operando IR with online product analysis during methanol conversion suggests similar reaction pathways in calcined and steamed crystals, but with greatly reduced methoxy group densities in the latter. The gradual development of optically dark crystal cores upon progressive steaming was shown by FIB-SEM to be due to the formation of regions with meso- and macropores, and these were shown by IR mapping to possess low hydroxyl densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.