Abstract

We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material’s dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.