Abstract

We propose a novel structure with two input and output silicon waveguide ports separated by the Insulator-Metal- Insulator channel deposited on silicon nitride base. In principle, both the top surface insulator/metal interface and bottom surface can support SPP a decoupled modes. Once the SPP modes excited input silicon waveguide, the SPP signals from the two optical branches (the top and bottom interfaces) propagate to the output silicon waveguide. At the output waveguide both branches interfere with each other and modulate the far-field scattering. The top surface is considered as the sensing arm of this plasmonic Mach-Zehnder interferometer (MZI). The bottom surface is considered as the reference arm of the sensor. High sensitivity and small foot print is achieved using this integrated simple plasmonic design. The combination of sensitive interferometric techniques and the optimization process of the design and the material yields to enhanced sensitivities up to 3000 nm/RIU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.