Abstract

The silicon pillar thickness effect on vertical double gate MOSFET (VDGM) fabricated by implementing oblique rotating ion implantation (ORI) method is investigated. For this purpose, several silicon pillar thicknesses t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">si</sub> were simulated. The source region was found to merge at t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">si</sub> < 57 nm, forming floating body effect. The electron-hole concentration along the channel and the depletion isolation region shows different shape and broaden in smaller t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">si</sub> . For several channel lengths L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> les 100 nm, in the reduction of pillar thickness, the subthreshold slope (SS) tends to decrease, which indicate an increase in gate-gate charge coupling. Other short channel effect parameters (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> , I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Dsat</sub> ) show better improvement for lower pillar thickness, thus offer better performance and control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call