Abstract

We designed and experimentally demonstrated a silicon photonics-integrated time-domain balanced homodyne detector (TBHD), containing an optical part of dimensions of 1.5 mm × 0.4 mm. To automatically and accurately balance the detector, new variable optical attenuators were used, and a common mode rejection ratio of 86.9 dB could be achieved. In the quantum tomography experiment, the density matrix and Wigner function of a coherent state were reconstructed with 99.97% fidelity. The feasibility of this TBHD in a continuous-variable quantum key distribution (CVQKD) system was also demonstrated. Our TBHD technologies are expected to be used in silicon photonics-integrated CVQKD system and silicon photonics-integrated BB84 heterodyne system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.