Abstract

Silicon photonics has enormous potential for ultrahigh-capacity coherent optical transceivers. We demonstrate an in-phase and quadrature (IQ) modulator using silicon photonic traveling-wave modulators optimized for higher order quadrature amplitude modulation (QAM). Its optical and RF characteristics are studied thoroughly in simulation and experiment. We propose a system-orientated approach to optimization of the silicon photonic IQ modulator, which minimizes modulator-induced power penalty in a QAM transmission link. We examine the tradeoff between modulation efficiency and bandwidth for the optimal combination of modulator length and bias voltage to maximize the clear distance between adjacent constellation points. This optimum depends on baud rate and modulation format, as well as achievable driving voltage swing. Measured results confirm our prediction using the proposed methodology. Without precompensating bandwidth limitation of the modulator, net data rates up to 232 Gb/s (70 Gbaud 16-QAM) on single polarization are captured, indicating great potential for 400+ Gb/s dual-polarization transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.