Abstract

We experimentally demonstrate a silicon photonic chip-scale 16-channel wavelength division multiplexer (WDM) operating in the O-band. The silicon photonic chip consists of a common-input bus waveguide integrated with a sequence of 16 spectral add-drop filters implemented by 4-port contra-directional Bragg couplers and resonant cladding modulated perturbations. The combination of these features reduces the spectral bandwidth of the filters and improves the crosstalk. An apodization of the cladding modulated perturbations between the bus and the add/drop waveguides is used to optimize the strength of the coupling coefficient in the propagation direction to reduce the intra-channel crosstalk on adjacent channels. The fabricated chip was validated experimentally with a measured intra-channel crosstalk of ∼-18.9 dB for a channel spacing of 2.6 nm. The multiplexer/demultiplexer chip was also experimentally tested with a 10 Gbps data waveform. The resulting eye-pattern indicates that this approach is suitable for datacenter WDM-based interconnects in the O-band with large aggregate bandwidths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.