Abstract
Plasma silicon nitride (P-SiN), oxynitride (P-SiON), and silicon dioxide (P-SiO2) films have been prepared from SiH4–NH3–N2O mixtures in a large volume microwave plasma (LMPR, 2.45 GHz) apparatus at TS = 280 °C. Film compositions, determined by X-ray photoelectron spectroscopy and nuclear elastic recoil detection analysis, reveal about 15 at.% hydrogen in P-SiN, <2% in P-SiO2, and intermediate values in P-SiON. Various physicochemical and electrical properties (density, refractive index, intrinsic stress, permittivity, and conductivity) vary systematically with film composition, O/(O + N), determined from the above analyses. The present microwave plasma enhanced chemical vapour deposition (PECVD) films compare favorably with the best PECVD and low pressure chemical vapour deposition (LPCVD) materials reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.