Abstract

ABSTRACTWe have used a combination of plasma and rapid thermal processing for the formation of thin gate-dielectric films. The bulk dielectric films investigated include silicon oxide, oxynitride and multilayer oxide-nitride-oxide heterostructures formed by plasma-assisted oxidation, remoteplasma-enhanced chemical-vapor deposition (remote-PECVD) followed by post-deposition rapid thermal annealing (RTA). Auger electron spectroscopy (AES) and infrared absorption spectroscopy (IR) have been used to study the chemistry of interface formation and the bulk dielectric chemical bonding, respectively. Electrical characterization of MOS capacitor structures incorporating these dielectrics was performed by conventional capacitance and current voltage techniques, C-V and I-V, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.