Abstract

Solid-state nuclear magnetic resonance (NMR) spectroscopy, total X-ray scattering with a pair distribution function (PDF) analysis, and transmission electron microscopy (TEM) were employed to explore the structures of microporous and non-porous ceramics synthesized by an NH3-assisted thermolysis from polymers. Polysiloxane (SPR-212a, Starfire® Systems) and polysilazane (HTT-1800, KiON Speciality Polymers) polymers form microporous silicon oxycarbonitride ceramics with accessible and tailored micropores. 29Si magic-angle-spinning NMR showed that the introduction of nitrogen leads to structures incorporating considerable amounts of SiN4 and SiO2N2 building blocks. The samples derived from a polycarbosilane (SMP-10, Starfire® Systems) remained non-porous: for such a C-rich and N-bearing phase, the NMR, TEM, and PDF results suggested a Si network exhibiting domains dominated by either SiN or SiC bonds. 13C NMR revealed primarily “carbidic” CSi4 environments in the C-rich phases, as well as the formation of an amorphous sp2-hybridized carbon phase; both are believed to be detrimental for the micropore formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.