Abstract

The authors report on the fabrication of a silicon/organic heterojunction based IR photodetector. It is demonstrated that an Al/p-Si/perylene-derivative/Al heterostructure exhibits a photovoltaic effect up to 2.7μm (0.46eV), a value significantly lower than the bandgap of either material. Although the devices are not optimized, at room temperature a rise time of 300ns, a responsivity of ≈0.2mA/W with a specific detectivity of D∗≈7×107 Jones at 1.55μm is found. The achieved responsivity is two orders of magnitude higher compared to our previous efforts [1,2]. It will be outlined that the photocurrent originates from an absorption mechanism involving excitation of an electron from the Si valence band into the extended LUMO state in the perylene-derivative, with possible participation of intermediate localized surface state in the organic material.The non-invasive deposition of the organic interlayer onto the Si results in compatibility with the CMOS process, making the presented approach a potential alternative to all inorganic device concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.