Abstract

Machinable silicon nitride/ hexahedral boron nitride (Si3N4/h-BN) composites were in-situ synthesized in a nitrogen (N2) atmosphere by means of combustion synthesis gas-solid reaction with silicon (Si) powder and h-BN as raw materials. The effect of the volume fraction of h-BN on the machinable properties of Si3N4/BN composite was studied. The results show that Si powder was fully nitrified and no residual Si was found. Microstructures by a scanning electron microscopy (SEM) show Columnar crystals of β-Si3N4 are the main phase and acicular crystals of h-BN disperse β-Si3N4 intergranular. With the increasing of the volume content of h-BN, the machinability of the composite increases, but the bending strength of composite decreases firstly and then increases. The lowest bending strength is 84.96MPa at 25% volume fraction of h-BN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.