Abstract
Sensors based on the interaction between analytes and the evanescent field of a silicon nitride waveguide are emerging in the field of bio-medical and environmental applications. We designed and implemented the first single particle detector based on this sensor principle that consists of a silicon nitride waveguide with sub-micron dimensions. The detection capabilities of the prototype were demonstrated with polystyrene latex (PSL) spheres equal to or greater than Ø200 nm. Single PSL spheres caused a decrease of the transmission through the waveguide from 0.2 up to 10%, depending on their diameter and position with respect to the waveguide. The experiments were supported by 3D finite element method (FEM) simulations of the particle-waveguide interaction. The simulated relative scattered power of a single sphere is in agreement with experimental results obtained from two different setups. The silicon nitride photonic chip was fabricated with a plasma-enhanced chemical vapor deposition (PECVD) process, which is compatible with established complementary metal-oxide-semiconductor (CMOS) processes for high-volume production. The demonstrator setup was realized with an external laser and photodetector, but with recent advances in light source and detector integration, our work leverages the realization of a fully integrated, low-cost photonic particle detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.