Abstract

In this paper, four-channel cascaded Mach-Zehnder interferometer-based wavelength (de)multiplexers in the O-band are demonstrated experimentally by utilizing silicon nitride (SiN) optical waveguides. By reference to the commonly used 100 Gigabit Ethernet standards, two types of (de)multiplexer devices with different channel spacings are designed and fabricated. Both the devices exhibit low insertion loss and flat passbands. The lower thermo-optical coefficient provided by SiN brings benefits of reduction in thermal sensitivity. The fabricated (de)multiplexers show a temperature-dependent wavelength shift of about 18.5 pm/°C, which is reduced by 75% compared to the standard silicon-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.