Abstract

Optically active perovskite nanocrystals have shown considerable promise for a myriad of applications, such as single photon source, light-emitting diodes and nanophotonics. Coupling those nanocrystals to photonic micro- and nanostructures will offer additional degrees of freedom to manipulate their optical properties. Herein, we demonstrate the coupling of perovskite nanocrystals to a mechanically robust, poly(methyl-methacrylate) (PMMA)-encapsulated silicon nitride nanobeam photonic crystal cavity at room temperature. As determined from the time-resolved photoluminescence decay measurements, we observed enhanced spontaneous emission from the perovskite nanocrystals by a factor of 1.4, consistent with finite difference time domain simulation. In addition, by varying the concentration of the perovskite nanocrystal in the PMMA layer, the effective index of the layer can be modified, allowing us to tune the cavity mode resonance. Our results show that solution-processable perovskite nanocrystals hold a promising prospect for applications such as on-chip light sources, optoelectronic devices and photonic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.