Abstract

We report the lowering of the formation temperature of spherical-shaped Ge quantum dots (QDs) to 850 °C from our previously-reported 900 °C. This large reduction in QD formation temperature was achieved via the use of a hydrogenated, plasma-enhanced chemical-vapor deposited (PECVD) silicon nitride (SiN). The exquisite interplay between H, Ge, Si and O interstitials, controlling QD formation during the thermal oxidation of poly-SiGe layers deposited over PECVD-SixNy: H, is further explored in order to understand the underlying mechanisms. We have experimentally observed that the high hydrogen content of the PECVD-SixNy: H facilitates the lower-temperature (850 °C) oxidation of the nitride layer, while simultaneously being able to generate smaller diameter, fully coalesced Ge QDs within. Such heterostructures of SiN coupled-Ge QDs are a fundamental building block for the ultimate fabrication of active SiN-based Ge photonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call