Abstract
AbstractThe vertical growth of Si nanowires on non‐monocrystalline substrates is of significant interest for photovoltaics and other energy harvesting applications. In this paper, we present results on using poly‐Si layers formed by aluminum‐induced crystallization (AIC) on fused quartz wafers as an alternative substrate for the vapor‐liquid‐solid (VLS) growth of vertical Si nanowires. Oxidation of the Al surface to Al2O3 before the a‐Si deposition was shown to be a key requirement in the formation of the poly‐Si template since it promotes the crystallization of the a‐Si into Si(111) which is required for vertical silicon nanowire growth. The effect of Al deposition technique (DC sputtering versus thermal evaporation) on a‐Si crystallization and Si nanowire growth was investigated. The use of Al thermal evaporation yielded AIC poly‐Si layers with the highest fraction of 〈111〉 grains as measured by orientation imaging microscopy (OIM) which enabled the growth of vertical Si nanowires. Cross‐sectional transmission electron microscopy analysis confirmed that the 〈111〉 Si nanowires grew epitaxially off of {111}poly‐Si grains in the AIC layer. This study demonstrates the potential of using AIC poly‐Si as a template layer for the vertical growth of silicon nanowires on amorphous substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.