Abstract

We inexpensively fabricated vertically aligned Si nanowire solar cells using metal-induced electroless etching and a novel doping technique. Co-doping of boron and phosphorus was achieved using a spin-on-doping method for the simultaneous formation of a front-side emitter and a back surface field in a one-step thermal cycle. Nickel electroless deposition was also performed in order to form a continuous metal grid electrode on top of an array of vertically aligned Si nanowires. A highly dense array of Si nanowires with low reflectivity was obtained using Ag nanoparticles of optimal size (60–90 nm). We also obtained an open circuit voltage of 544 mV, a short circuit current of 14.68 mA/cm2, and a cell conversion efficiency of 5.25% at 1.5AM illumination. The improved photovoltaic performance was believed to be the result of the excellent optical absorption of the Si nanowires and the improved electrical properties of the electroless deposited electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.