Abstract

Postharvest deterioration of ginger rhizome caused by microorganisms or wound infections causes significant economic losses. Fusarium solani is one of the important causal agents of prevalent ginger disease soft rot across the world. The massive and continuous use of chemical fungicides in postharvest preservation pose risks to human health and produce environmental contamination. Hence, new alternative tools are required to reduce postharvest deterioration and extend the postharvest life of ginger. In this study, the use of silicon nanoparticles (SiNPs) on the storability of ginger rhizomes during postharvest storage and their resistance to Fusarium solani was investigated. The results showed that 50, 100, and 150 mg L−1 of SiNPs increased the firmness of the ginger rhizome during storage but decreased the decay severity, water loss, total color difference, and the reactive oxygen species (ROS; H2O2 and superoxide anion) accumulation. Specifically, 100 mg L−1 (SiNP100) demonstrated the best effect in the extension of postharvest life and improved the quality of the ginger rhizomes. SiNP100 application increased the activities of antioxidant enzymes (SOD and CAT) and the total phenolics and flavonoid contents, thereby reducing the ROS accumulation and malondialdehyde (MDA) content. Meanwhile, SiNP100 treatment negatively impacts the peroxidase (POD) and polyphenol oxidase (PPO) activities, which may have contributed to the lower level of lignin and decreased total color difference. SiNP100 likely decreased water loss and the transfer of water by altering the expression of aquaporin genes. Moreover, SiNP100 modulated the expression of lignin synthesis and phytopathogenic responses genes including MYB and LysM genes. Furthermore, SiNP100 inhibited Fusarium solani by preventing the penetration of hyphae into cells, thus decreasing the severity of postharvest pathogenic decay. In summary, this study revealed the physiology and molecular mechanisms of SiNPs-induced tolerance to postharvest deterioration and resistance to disease, which provides a foundation for using SiNPs resources as a promising alternative tool to maintain ginger quality and control postharvest diseases.

Highlights

  • Ginger (Zingiber officinale Roscoe) is one of the most economic important vegetables in the Zingiberaceae family, and it is cultivated in many tropical and subtropical countries such as China, India, and Australia (Liu et al, 2016)

  • The maximum water loss (5.15%) after 28 days of the storage was observed in control samples, which were 1.24, 1.33, and 1.14-fold higher than the fresh ginger rhizomes treated with SiNP50, SiNP100, and SiNP150, respectively

  • Our results revealed that SiNP100 treatment was most effective in improving qualities of ginger rhizomes during postharvest storage

Read more

Summary

Introduction

Ginger (Zingiber officinale Roscoe) is one of the most economic important vegetables in the Zingiberaceae family, and it is cultivated in many tropical and subtropical countries such as China, India, and Australia (Liu et al, 2016). Ginger has been widely used as a food, spice, flavoring agent, and medicine due to its beneficial characteristics such as aroma, pungency, nutrients, and medicinal properties. Similar to most vegetables, ginger deteriorates rapidly after harvest due to dehydration, pathogen invasion, and senescence. This seriously decreases the quality, flavor, and medicinal effect of rhizomes during postharvest storage and results in significant economic losses (Kaushal et al, 2017; Li et al, 2020). There is a need to reduce decay and extend the postharvest life of ginger

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call